
Issues in Integrated Health Management Issues in Integrated Health Management 
of Life Support Systemsof Life Support Systems

Gautam Biswas and EricGautam Biswas and Eric--Jan MandersJan Manders
Vanderbilt UniversityVanderbilt University

gautam.biswas@vanderbilt.edugautam.biswas@vanderbilt.edu; ; http://http://www.vuse.vanderbilt.eduwww.vuse.vanderbilt.edu/~biswas/~biswas

David KortenkampDavid Kortenkamp
NASA Johnson Space Center/Metrica IncNASA Johnson Space Center/Metrica Inc

Acknowledge: Acknowledge: S. Abdelwahed, G. Karsai, J. Wu, I. Roychoudhury, N. S. Abdelwahed, G. Karsai, J. Wu, I. Roychoudhury, N. 
Mahadevan, P. Mahadevan, P. BonsassoBonsasso, and S. Bell, and S. Bell

..

Supported by NASA-ALS NCC 9-159 (Program Manager: Darrell Jan)

Acknowledge help from Lockheed (Lin, Hanford, Anderson), and JSC (Anderson, Ewert)

mailto:gautam.biswas@vanderbilt.edu
http://www.vuse.vanderbilt.edu/~biswas


7/18/20067/18/200622

What is ISHM?What is ISHM?
• Ability to maintain system safety, health, and 

performance over the life of the system
• Involves monitoring, control, fault diagnosis, 

adaptation, reconfiguration and maintenance
• Operates along a continuum of time scales

– Behaviors (immediate): monitoring and control
– Performance level (short-term): fault diagnosis, 

adaptation
– Health (long-term): mission performance, 

maintenance, reconfiguration

Issue: What about humans in the loop?
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Life support systemsLife support systems
• Life support systems produce consumables for human 

crew members.  Consumables include oxygen, water, 
and food

• Life support systems process waste products such as 
carbon dioxide, waste water and solid waste

• Goal:  Closed-loop system in terms of material 
consumption

• Life support systems must be carefully controlled to 
create a habitable environment

• Faults in life support systems can threaten both the crew 
and the mission
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ISHEM issues for Life SupportISHEM issues for Life Support
• Life support systems pose several unique and 

significant issues including:
– Interacting subsystems: Life support systems contain 

many different subsystems that all need to work 
together

– Multiple Time Scales: The subsystems operate at 
very different time-scales

– Sensing: The biological components of life support 
systems make sensing difficult. 

– Decision-making: Life support subsystems operate at 
different time-scales and require decisions both in 
fast, real-time situations and in slow, long-duration 
situations

– Human involvement: Humans are a significant part of 
the life support system in that they produce and 
consume resources
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Surface Habitat Surface Habitat ---- ArchitectureArchitecture

Coupled systems
Crew chamber
Biomass
Air
Water
Thermal
Power Generation
Food
Waste

Operate at widely differering time constants
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Interacting systemsInteracting systems
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Fault adaptive controllersFault adaptive controllers
SelfSelf--Managing SystemsManaging Systems

• Definition
– Systems that can manage their resources efficiently 

to achieve their objectives in a dynamic environment 
and under varying operation requirements

• Advantages
– Rapid adaptation to dynamic operating conditions
– Autonomy
– Automatic recovery from certain class of failures

• Application Domain
– Space exploration systems
– Manufacturing, Avionics and Automation systems
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Fault-Adaptive Control Architecture
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Modeling ApproachModeling Approach

• Integrated Modeling Paradigm
–– Graphical ComponentGraphical Component--oriented Modeling (GME) oriented Modeling (GME) 

PhysicsPhysics--based models based models Models tailored for specific Models tailored for specific 
applicationsapplications

•• PhysicsPhysics--based models: Hybrid Bond Graphs based models: Hybrid Bond Graphs 
(nonlinearities, switching junctions); Block Diagrams(nonlinearities, switching junctions); Block Diagrams

•• Simulink/Stateflow Models Simulink/Stateflow Models –– Energy and mass Energy and mass 
balance; crew schedulebalance; crew schedule

•• DiscreteDiscrete--time models time models –– Online supervisory controlOnline supervisory control
–– Modeled: WRS, ARS, Habitat, Crew Activity, Modeled: WRS, ARS, Habitat, Crew Activity, 

Power Generation, EVA ActivityPower Generation, EVA Activity
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Water Recovery SystemWater Recovery System
Three subsystems

Biological Waste Processor (BWP)
dirty  water circulates in loop through 

packed bed + nitrifier tubes
cleaner organic contaminant-free 

water collects in GLS
control – two pumps + nitrifier

cleaning
Reverse Osmosis (RO)

Membrane-based particulate 
inorganic waste removal

water circulates in loop – four 
modes of operation: primary, 
secondary, purge, and clean

clean water to PPS (not modeled), 
purged water to AES

Air Evaporation System (AES)
evaporates water from wick, 

heat exchanger cools down to 
retrieve pure waterTwo storage units:

(1) Waste Water Tank: capacity = 25 liters
(2)  Potable Water Tank: capacity = 650 liters
Processing rate:  25 – 50 liters per day
Power Consumption (nominal): BWP = 0.7kW, RO = 
0.8 kW; AES = 1.2 kW

Control: Two levels
(1) Local controllers for BWP,

RO, and AES
(1) System Controller: WRS
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Air Revitalization SystemAir Revitalization System

Details: CDRA in tight loop with crew chamber: removes CO2; O2 added to restore air quality
Air flow: between 5 and 10 kg./hour; Cabin air = 25oC
CRS: CO2 + H2 in:  CH4 (vented) + H20 produced (back to dirty water tank); Temp = 425oC
processes 0.16 to 0.23 kg of C per hour when on (operates only during the day)
Buffers:  (1) CO2: 4 kg (2) H2: 0.8 kg (3) O2:  10 kg  (N2 storage not dealt with explicitly)
Power consumed: CDRA: 0.8 kW; CRS: 0.55 kW; OGS: 0.67 kW.

Three subsystems: 
(1) CDRA – CO2 removal
(2) CRS – CO2 reduction,
(3) OGS  -- electrolysis of water 

into H2 and O2
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Hierarchical ControlHierarchical Control
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• Use behavioral model 
to estimate future 
system states over the 
prediction horizon 

t0

Time Prediction horizon

Current state
Start state

• Obtain the sequence of 
control inputs that 
optimize desired utility 
function

• Apply the first control 
input in the sequence at 
time t; discard the rest

UtilityUtility--based based 
Limited Look Ahead ControlLimited Look Ahead Control

• Repeat the process at 
each time step
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Online Control DesignOnline Control Design
• Discrete time model of plant + transitions
• To choose best action, perform look ahead search up to 

L steps
• Define utility function

• Repeat for next time step – accommodates for faults and 
disturbances in system
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SIMA Challenge ProblemSIMA Challenge Problem
• 90 day surface Habitat Lander of Lunar South Pole 

(14 day + 14 night cycle)
• One time use of surface habitat
• Crew of four 
• Our focus: Air, Water, Thermal, Crew Chamber, Power 

Generation and Consumption
• Deal with flexible crew schedules

Control Goals: For appropriate size of buffers maintain cabin 
O2 and CO2 levels + temperature 

& provide adequate clean water supply at specified levels to support 
crew habitat + EVA activities

Ensure closed loop operation (minimum waste) of resources while not 
exceeding power (energy) requirements

Details: Lunar Reference Mission Document (Hanford and Ewert)
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Evaluating System PerformanceEvaluating System Performance
90 Day Mission90 Day Mission

Potable water: Initial: 650 liters; End: 200 liters

Energy stored: Min: 200 kW-hour; Max: 1300 kW-hour

Oxygen tank: Initial = 9.9 kg; Max = 10 kg; Min = 9.9 kg
CO2 tank: Initial = 0 kg; Max = 2.6 kg; Min = 1.4 kg
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Evaluating System PerformanceEvaluating System Performance
90 Day Mission90 Day Mission

Dynamic modeling allowed robust controller design
But key finding:  System required much smaller buffers

Overall reduced Equivalent System Mass (ESM)
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Resource monitorsResource monitors
• From Behavior (and Function) to Performance 

Monitoring
– Examples: Monitor power consumption, rate of generation of 

product
– Typically, these changes will be small and subtle & accumulate 

over time
– Key issue: how to project consequences of subtle (small) 

changes on behavior, then long-term performance and 
resources available for mission

• Need ability to monitor + predict, i.e., Prognosis
• ISHM extends resource monitoring + prognosis to  

decision making
• Decision making implies actions to correct anomalies, e.g., 

maintenance, repair, reconfiguration
• With and/or without humans in the loop 
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Integrated Planning & Control Integrated Planning & Control 
ArchitectureArchitecture
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Example: Planning + ControlExample: Planning + Control

• 90 day mission with 28 
day cycles

• Phase 1:
– Startup
– EVA on day 18

• First generate 28 day 
plan
– Initialization + testing 

activities
– Science expts. 

startup
– Build up buffers to 

required levels
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Example: Planning + ControlExample: Planning + Control

Model Information InterfaceModel Information Interface
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ALS World 
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PlannerPlanner
1) 7 days startup
2) 4 days – high CO2 consumption
3) 4 days – high CO2 state to scrub system
4) 1 day – O2 preparation for EVA
5) Normal operations from day 10
6) EVA on day 18
7) Maintenance checks day 19-20
8) Normal operations day 20-28
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Example: Planning + ControlExample: Planning + Control
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Example: continuedExample: continued
• Day 10 – Anomaly detection & 

analysis: Restriction in CO2 output 
from CDRA + leak in dessicant bed

• Controller: Restrict CRS + OGS 
operations

• Report to Planner -- CO2 clear up 
needs to 5 days

• Question:
– (i) perform  2 day CDRA repair –

creates O2 restriction
– (ii) push EVA from cycle to day 20

• Mission control + crew – cannot 
push back EVA

•• Planner + Controller solution:Planner + Controller solution:
–– Crew give up exercise period Crew give up exercise period ––

from day 9 to 20from day 9 to 20
–– EVA on day 18EVA on day 18
–– CDRA repair days 19 & 20CDRA repair days 19 & 20

•• Repair procedures chosen byRepair procedures chosen by
sequencersequencer

•• System state, models updatedSystem state, models updated
•• Planner suggests return to normal Planner suggests return to normal 

opsops
•• Controller concursController concurs

ALSALS
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Issues in ISHM & Issues in ISHM & 
System designSystem design

• ISHM does not (just) imply autonomy – ISHM has an 
important role in humans-in-the loop systems (crew, mission 
control)
– Apollo 13 scenario – faster response

• ISHM is not just to deal with failures – it should be 
maintaining and optimizing nominal + degraded operations
– Resource allocation
– Reduction in mission costs (ESM)

• An Approach: Simulation test-beds that are based on 
systematic modeling technologies
– Contribute to more efficient, reliable, and safe design
– Address system integration issues (hardware–hardware, hardware–

software)
– Tools for “what-if” (scenario) analysis
– Variety of other analysis tools that can be used by mission controllers 

and crew during missions

Focus: Decision Support first and primary;  Autonomy secondary
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Current and Future Current and Future 
ApplicationsApplications

• Crew Exploration Vehicle
– Air, Water, Waste & Power systems – does not have to be completely 

closed-loop
– Other subsystems of the CEV
– Deal with partial shut down during uncrewed operations (e.g., while 

crew on lunar surface) and startup
• Lunar Habitats

– Move toward closed loop air and water 
– Resource monitoring important: link to scheduling and operations

• Mars Vehicles and Habitats
– All components  including biomass systems important
– Closed loop operations
– Resource and health monitoring, scheduling, predictive analysis,

control, maintenance, and prognosis will be key to success of such 
missions

Number of design and run-time metrics will have to be addressed

One of the more important ones – Equivalent System Mass (ESM)
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